Novel xylan degrading enzymes from polysaccharide utilizing loci of Prevotella copri DSM18205

Author:

Linares-Pastén Javier A.ORCID,Hero Johan Sebastian,Pisa José Horacio,Teixeira Cristina,Nyman Margareta,Adlercreutz Patrick,Martinez M. AlejandraORCID,Karlsson Eva NordbergORCID

Abstract

AbstractPrevotella copri DSM18205 is a bacterium, classified under Bacteroidetes that can be found in the human gastrointestinal tract (GIT). The role of P. copri in the GIT is unclear, and elevated numbers of the microbe have been reported both in dietary fiber-induced improvement in glucose metabolism but also in conjunction with certain inflammatory conditions. These findings raised our interest in investigating the possibility of P. copri to grow on xylan, and identify the enzyme systems playing a role in digestion of xylan-based dietary fibers in P. copri, which currently are unexplored. Two xylan degrading polysaccharide utilizing loci (PUL10 and 15) were found in the genome, with three and eight GH-encoding genes, respectively. Three of the eight gene products were successfully produced in Escherichia coli: One monomeric two-domain extracellular enzyme from GH43 (subfamily 12, in PUL10, 60 kDa) and two dimeric single module enzymes from PUL15, one extracellular GH10 (41 kDa), and one intracellular GH43 subfamily 1 enzyme (37 kDa). The GH43_12 enzyme was hydrolysing arabinofuranose residues from different substrates, and a model of the 3D-structure revealed a single arabinose binding pocket. The GH10 (1) and GH43_1 are cleaving the xylan backbone. Hydrolysis products of GH10 (1) were DP2-4, and seven subsites (−3 to +4) were predicted in the 3D-model of the GH10 active site. GH43_1 mainly produced xylose (in line with its intracellular location). Based on our results we propose that in PUL15, GH10 (1) is an extracellular endo-1,4-β-xylanase, that hydrolyses mainly glucuronosylated xylan polymers to xylooligosaccharides (XOS); while, GH43_1 in the same PUL, is an intracellular β-xylosidase, catalysing complete hydrolysis of the XOS to xylose. In PUL10, the characterized GH43_12 is an arabinofuranosidase, with a role in degradation of arabinoxylan, catalysing removal of arabinose-residues on xylan polymers.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3