Author:
Kanko Robert,Laende Elise K.,Davis Elysia M.,Selbie W. Scott,Deluzio Kevin J.
Abstract
AbstractKinematic analysis is a useful and widespread tool used in research and clinical biomechanics for the estimation of human pose and the quantification of human movement. Common marker-based optical motion capture systems are expensive, time intensive, and require highly trained operators to obtain kinematic data. Markerless motion capture systems offer an alternative method for the measurement of kinematic data with several practical benefits. This work compared the kinematics of human gait measured using a deep learning algorithm-based markerless motion capture system to those of a common marker-based motion capture system. Thirty healthy adult participants walked on a treadmill while data were simultaneously recorded using eight video cameras (markerless) and seven infrared optical motion capture cameras (marker-based). Video data were processed using markerless motion capture software, marker-based data were processed using marker-based capture software, and both sets of data were compared. The average root mean square distance (RMSD) between corresponding joints was less than 2.5 cm for all joints except the hip, which was 3.6 cm. Lower limb segment angles indicated pose estimates from both systems were very similar, with RMSD of less than 5.5° for all segment angles except those that represent rotations about the long axis of the segment. Lower limb joint angles captured similar patterns for flexion/extension at all joints, ab/adduction at the knee and hip, and toe-in/toe-out at the ankle. These findings demonstrate markerless motion capture can measure similar 3D kinematics to those from marker-based systems.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献