Prophage-dependent recombination drives genome structural variation and phenotypic heterogeneity in Escherichia coli O157:H7

Author:

Fitzgerald Stephen F.ORCID,Lupolova NadejdaORCID,Shaaban Sharif,Dallman Timothy J.,Greig DavidORCID,Allison Lesley,Tongue Sue C.ORCID,Evans Judith,Henry Madeleine K.ORCID,McNeilly Tom N.,Bono James L.ORCID,Gally David L.ORCID

Abstract

AbstractThe human zoonotic pathogen Escherichia coli O157 is defined by its extensive prophage repertoire including those that encode Shiga toxin, the factor responsible for inducing life-threatening pathology in humans. As well as introducing genes that can contribute to the virulence of a strain, prophage can enable the generation of large-chromosomal rearrangements (LCRs) by homologous recombination. This work examines the types and frequencies of LCRs across the major lineages of the O157 serogroup and defines the phenotypic consequences of specific structural variants. We demonstrate that LCRs are a major source of genomic variation across all lineages of E. coli O157 and by using both optical mapping and ONT long-read sequencing demonstrate that LCRs are generated in laboratory cultures started from a single colony and particular variants are selected during animal colonisation. LCRs are biased towards the terminus region of the genome and are bounded by specific prophages that share large regions of sequence homology associated with the recombinational activity. RNA transcriptional profiling and phenotyping of specific structural variants indicated that important virulence phenotypes such as Shiga toxin production, type 3 secretion and motility are affected by LCRs. In summary, E. coli O157 has acquired multiple prophage regions over time that act as genome engineers to continually produce structural variants of the genome. This structural variation is a form of epigenetic regulation that generates sub-population phenotypic heterogeneity with important implications for bacterial adaptation and survival.Author SummaryEscherichia coli has an ‘open genome’ and has acquired genetic information over evolutionary time, often in the form of bacteriophages that integrate into the bacterial genome (prophages). E. coli O157 is a clonal serogroup that is found primarily in ruminants such as cattle but can cause life-threatening infections in humans. E. coli O157 isolates contain multiple prophages including those that encode Shiga-like toxins which are responsible for the more serious disease associated with human infections. We show in this study that many of these prophages exhibit large regions of sequence similarity that allow rearrangements to occur in the genome generating structural variants. These occur routinely during bacterial culture in the laboratory and the variants are detected during animal colonization. The variants generated can give the bacteria altered phenotypes, such as increased motility or toxin production which can be selected in specific environments and therefore represent a highly dynamic mechanism to generate variation in bacterial populations without a change in overall gene content.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3