The Diversity and Evolution of Microbial Dissimilatory Phosphite Oxidation

Author:

Ewens Sophia D.,Gomberg Alexa F. S.,Barnum Tyler P.,Borton Mikayla A.,Carlson Hans K.,Wrighton Kelly C.,Coates John D.

Abstract

AbstractPhosphite is the most energetically favorable chemotrophic electron donor known, with a half-cell potential (E°’) of −650 mV for the PO43-/PO33- couple. Since the discovery of microbial dissimilatory phosphite oxidation (DPO) in 2000, the environmental distribution, evolution, and diversity of DPO microorganisms (DPOM) has remained enigmatic and only two species have been identified. Here metagenomic sequencing of phosphite enriched microbial communities enabled the reconstruction and metabolic characterization of 21 novel DPOM. These DPOM spanned six classes of bacteria, including the Negativicutes, Desulfotomaculia, Synergistia, Syntrophia, Desulfobacteria and Desulfomonilia_A. Comparing the DPO genes from the genomes of enriched organisms to over 17,000 publicly available metagenomes revealed the global existence of this metabolism in diverse anoxic environments, including wastewaters, sediments, and subsurface aquifers. Despite their newfound environmental and taxonomic diversity, metagenomic analyses suggested that the typical DPOM is a chemolithoautotroph that occupies low-oxygen environments and specializes in phosphite oxidation coupled to CO2 reduction. Phylogenetic analyses indicated that the DPO genes form a highly conserved cluster that likely has ancient origins predating the split of monoderm and diderm bacteria. By coupling microbial cultivation strategies with metagenomics, these studies highlighted the unsampled metabolic versatility latent in microbial communities. We have uncovered the unexpected prevalence, diversity, biochemical specialization, and ancient origins of a unique metabolism central to the redox cycling of phosphorus, a primary nutrient on earth.Significance StatementGeochemical models of the phosphorus (P) cycle uniquely ignore microbial redox transformations. Yet phosphite is a reduced P source that has been detected in several environments at concentrations that suggest a contemporary P redox cycle. Microbial dissimilatory phosphite oxidation (DPO) converts soluble phosphite into phosphate, and a false notion of rarity has limited our understanding of its diversity and environmental distribution. Here we demonstrate that DPO is an ancient energy metabolism hosted by taxonomically diverse, autotrophic bacteria that exist globally throughout anoxic environments. DPO microorganisms are therefore likely to have provided bioavailable phosphate and fixed carbon to anoxic ecosystems throughout Earth’s history and continue to do so in contemporary environments.

Publisher

Cold Spring Harbor Laboratory

Reference73 articles.

1. Redox chemistry in the phosphorus biogeochemical cycle

2. Microbial Phosphite Oxidation and Its Potential Role in the Global Phosphorus and Carbon Cycles;Adv. Appl. Microbiol,2017

3. Archean phosphorus liberation induced by iron redox geochemistry

4. Earth’s phosphides in Levant and insights into the source of Archean prebiotic phosphorus;Sci. Rep,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3