Abstract
ABSTRACTEcosystem engineers (EEs) are present in every environment and are known to strongly influence ecological processes and thus shape the distribution of species and resources. In this study, we assessed the direct and indirect effect of two EEs (perennial shrubs and ant nests), individually and combined, on the composition and function of arid soil bacterial communities. To that end, top soil samples were collected in the Negev Desert Highlands during the dry season from four patch types: (1) barren soil; (2) under shrubs; (3) near ant nests; or (4) near ant nests situated under shrubs. The bacterial composition was evaluated in the soil samples (fourteen replicates per patch type) using 16S rRNA gene amplicon sequencing, together with physico-chemical measures of the soil, and the potential functions of the community. We have found that the EEs differently affected the community composition. Indeed, barren patches supported a soil microbiome, dominated by Rubrobacter and Proteobacteria, while in EE patches the Deinococcus-Thermus phylum was dominating. The presence of the EEs similarly enhanced the abundance of phototrophic, nitrogen cycle and stress- related genes. In addition, only when both EEs were combined, were the soil characteristics altered. Our results imply that arid landscapes foster unique communities selected by each EE(s), solo or in combination, yet these communities have similar potential biological traits to persist under the harsh arid conditions. Environments with multiple EEs are complicated to study due to the possibility of non-additive effects of EEs and thus further research should be done.IMPORTANCEEcosystem engineers are organisms that can create, modify, or maintain their habitat. They are present in various environments but are particularly conspicuous in desert ecosystems, where their presence is tightly linked to vital resources like water or nutrients. Despite their key role in structuring and controlling desert ecosystems, joint engineering, and their effect on soil function, are unknown. Our study explores the contributions of key ecosystem engineers to the diversity and function of their soil microbiome allowing better understanding of their role in shaping habitats and engineering their activity
Publisher
Cold Spring Harbor Laboratory