Regulatory involvement of the PerR and SloR metalloregulators in the Streptococcus mutans oxidative stress response

Author:

Ruxin Talia R.,Schwartzman Julia A.,Davidowitz Cleo R.,Haney Robet A.,Spatafora Grace A.

Abstract

ABSTRACTStreptococcus mutans is a commensal of the human oral microbiome that can instigate dental caries under conditions of dysbiosis. This study investigates S. mutans metalloregulators and their involvement in mediating a response to oxidative stress. Oxidative stress in the oral cavity can derive from temporal increases in reactive oxygen species (ROS) after meal consumption, and from endogenous bacterial ROS-producers that colonize the dentition as constituents of dental plaque. We hypothesize that the PerR (SMU.593) and SloR (SMU.186) metalloregulatory proteins in S. mutans contribute to oxidative stress tolerance by regulating the expression of genes responsive to H2O2 challenge. The results of qRT-PCR experiments with S. mutans cultures exposed to 0.5mM H2O2 reveal perR transcription that is responsive to the peroxide stressor, and sloR transcription that is subject to PerR repression. The results of gel shift assays support direct binding of a PerR homolog to the S. mutans sloR promoter at Fur and PerR consensus sequences on the UA159 chromosome. In addition, transcription of the S. mutans tpx and dpr antioxidant genes is upregulated in a perR/sloR double knockout mutant, consistent with heightened resistance of the S. mutans GMS802 perR-deficient strain when challenged with H2O2. Cumulatively, these results reveal a relationship of reciprocity between the PerR and SloR metalloregulators during the S. mutans response to oxidative stress and begin to elucidate the fitness strategies that evolved to foster S. mutans survival and persistence in the transient environments of the human oral cavity.IMPORTANCEIn 2020, untreated dental caries, especially in the permanent dentition, ranked among the most prevalent infectious diseases worldwide. Moreover, caries disproportionately affects children and individuals of low socioeconomic status. Untreated caries can lead to systemic health problems and has been associated with extended school and work absences, inappropriate use of emergency departments, and an inability for military forces to deploy. In combination with public health policy, research aimed at alleviating S. mutans-induced tooth decay is important because it can improve oral health, as well as overall health, especially for underserved populations. This research is focused on the S. mutans SloR and PerR metalloregulatory proteins that can help inform the development of therapeutics aimed at alleviating and potentially preventing dental caries.

Publisher

Cold Spring Harbor Laboratory

Reference47 articles.

1. Dental caries;Nat Rev Dis Primer 3,2017

2. Adams J. 2020. Surgeon General’s Report: Oral Health in America: Advances and Challenges. Department of Health and Human Services.

3. Oral Health: The Silent Epidemic

4. Trends in Oral Health by Poverty Status as Measured by Healthy People 2010 Objectives

5. Socioeconomic and Racial/Ethnic Oral Health Disparities among U.S. Older Adults: Oral Health Quality of Life and Dentition;J Public Health Dent,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3