NMDAR-independent acetylcholine, serotonin, and norepinephrine mediated modulation of synaptic eligibility traces into LTD in mice visual cortex

Author:

Khan ShumsuzzamanORCID

Abstract

AbstractIn reward-based learning, synaptic eligibility traces are a well-defined theoretical solution for the conversion of initial co-activation of pre and postsynaptic neurons into long-term changes in synaptic strength by reward-linked neuromodulators. However, the types of neuromodulators involved in such a phenomenon in mouse visual cortex remain unknown. To characterize the Ex vivo condition, we used optogenetic stimulation of channelrhodopsin-(ChR2) expressing Cre/Ai32(ChR2-eYFP); Tph2-Cre/Ai32(ChR2-eYFP); Thi-Cre/Ai32(ChR2-eYFP) homozygous mice, which release acetylcholine, serotonin, and norepinephrine, respectively. With these mice it is possible to measure the transformation of eligibility traces into long-term changes by endogenous neuromodulators. Here we delineated that layer 2/3 neurons in the visual cortex showed no LTD after conditioning with paired-pulse low-frequency stimulation (ppLFS; 2Hz, 15 min). However, if conditioning was paired with acetylcholine, serotonin, or norepinephrine release upon 473 nm optical stimulation in brain slices, LTD occurs in every case. Thus, our data suggests a new pathway to connect the gap between stimulus and reward. Moreover, we found that stimulation by theta-glass or metal stimulators evoked IPSC traces with the same amplitudes but differences in decay kinetics, further questioning the appropriate use of stimulators in brain slices for evoking an event.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3