Simulation-Based Study on the COVID-19 Airborne Transmission in a Restaurant

Author:

Liu Han,He Sida,Shen Lian,Hong Jiarong

Abstract

COVID-19 has shown a high potential of transmission via virus-carrying aerosols as supported by growing evidence. However, detailed investigations that draw direct links between aerosol transport and virus infection are still lacking. To fill in the gap, we conducted a systematic computational fluid dynamics (CFD)-based investigation of indoor air flow and the associated aerosol transport in a restaurant setting, where likely cases of airborne infection of COVID-19 caused by asymptomatic individuals were widely reported by the media. We employed an advanced in-house large eddy simulation (LES) solver and other cutting-edge numerical methods to resolve complex indoor processes simultaneously, including turbulence, flow–aerosol interplay, thermal effect, and the filtration effect by air conditioners. Using the aerosol exposure index derived from the simulation, we are able to provide a spatial map of the airborne infection risk under different settings. Our results have shown a remarkable direct linkage between regions of high aerosol exposure index and the reported infection patterns in the restaurant, providing strong support to the airborne transmission occurring in this widely-reported incidence. Using flow structure analysis and reverse-time tracing of aerosol trajectories, we are able to further pinpoint the influence of environmental parameters on the infection risks and highlight the needs for more effective preventive measures, e.g., placement of shielding according to the local flow patterns. Our research, thus, has demonstrated the capability and value of high-fidelity CFD tools for airborne infection risk assessment and the development of effective preventive measures.

Publisher

Cold Spring Harbor Laboratory

Reference52 articles.

1. COVID-19 outbreak associated with air conditioning in restaurant, Guangzhou, China, 2020;Emerg. Infect. Dis,2020

2. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters;Nature,2020

3. Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients;Int. J. Infect. Dis,2020

4. L. Morawska and J. Cao , “Airborne transmission of SARS-CoV-2: The world should face the reality,” Environ. Int., 105730 (2020).

5. “This picture shows how 9 people in a restaurant got the coronavirus thanks to the placement of an air conditioning unit,” https://www.businessinsider.com/how-restaurant-air-conditioning-gave-nine-people-covid-china-2020-4, accessed: 2020-12-7.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3