Functional analysis of caspase cleavable proteoforms from the Drosophila GSK-3 gene shaggy

Author:

Korona DagmaraORCID,Nightingale DanielORCID,Fabre BertrandORCID,Nelson Michael,Fischer Bettina,Johnson Glynnis,Hubbard SimonORCID,Lilley KathrynORCID,Russell StevenORCID

Abstract

AbstractThe Drosophila shaggy (sgg) gene encodes the major fly orthologue of Glycogen Synthase Kinase −3 (GSK-3), a key highly conserved kinase at the heart of many signalling pathways. The sgg locus is complex, encoding multiple protein isoforms that are expressed in distinct temporal and tissue-specific patterns across development. Its isoforms predominantly differ at the carboxy and amino termini due to the use of different transcriptional start sites and alternative splicing events that include internal and terminal exons. One interesting class of proteins isoforms is represented by the Sgg-PD class (Sgg46), three proteoforms that contain a large 582 amino acid N-terminal domain which contains recognition sites for caspase-mediated cleavage. Regulated cleavage at these sites by non-apoptotic caspases has previously been implicated in the regulation of Sgg activity in adult bristle development. Here, we take a genome engineering approach to introduce specific tags into this unique Sgg-PD exon and utilise these for localisation and protein interaction studies. We also generated new loss of function alleles and specific mutations in the caspase cleavage motifs. We find that loss of functions Sgg-PD class alleles are viable and fertile, but exhibit adult locomotor and bristle defects. Expression analysis of lines carrying tags on both sides of the caspase cleavage sites indicates that the cleavage is developmentally regulated during embryogenesis. Surprisingly, we found that in some cells, particularly embryonic hemocytes, the N-terminal domain released by caspase cleavage is retained while the polypeptide containing the conserved kinase domain is apparently lost. Transcriptomic analysis of embryos homozygous for the new caspase-insensitive allele indicates a role for Sgg-PD in the regulation of cytoskeletal and cell junction functions, which is supported by proteomics analysis using specific in locus tags to identify common and unique protein interaction partners with N- and C-terminal domains. Taken together, our work identifies new activities for the Sgg protein and uncovers unexpected roles for caspase cleavage in Sgg biology.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3