Apparent negative density-dependent dispersal in tsetse (Glossinaspp) is an artefact of inappropriate analysis

Author:

Hargrove John W.ORCID,Van Sickle John,Vale Glyn A.,Lucas Eric R.ORCID

Abstract

AbstractAnalysis of genetic material from field-collected tsetse (Glossinaspp) in ten study areas has been used to predict that the distance (δ) dispersed per generation increases as effective population densities (De) decrease, displaying negative density dependent dispersal (NDDD). This result is an artefact arising primarily from errors in estimates ofS, the area occupied by a subpopulation, and thereby inDe, the effective subpopulation density. The fundamental, dangerously misleading, error lies in the assumption thatScan be estimated as the area (Ŝ) regarded as being covered by traps. Errors in the estimates ofδare magnified because variation in estimates ofSis greater than for all other variables measured, and accounts for the greatest proportion of variation inδ. The errors result in anomalously high correlations betweenδandS, and the appearance of NDDD, with a slope of −0.5 for the regressions of log(δ) on log(e), even in simulations where dispersal has been set as density independent. A complementary mathematical analysis confirms these findings. Improved error estimates for the crucial parameterb, the rate of increase in genetic distance with increasing geographic separation, suggest that three of the study areas should have been excluded becausebis not significantly greater than zero. Errors in census population estimates result from a fundamental misunderstanding of the relationship between trap placement and expected tsetse catch. These errors are exacerbated through failure to adjust for variations in trapping intensity, trap performance, and in capture probabilities between geographical situations and between tsetse species. Claims of support in the literature for NDDD are spurious. There is no suggested explanation for how NDDD might have evolved. We reject the NDDD hypothesis and caution that the idea should not be allowed to influence policy on tsetse and trypanosomiasis control.Author summaryGenetic analysis of field-sampled tsetse (Glossinaspp) has been used to suggest that, as tsetse population densities decrease, rates of dispersal increase – displaying negative density dependent dispersal (NDDD). It is further suggested that NDDD might apply to all tsetse species and that, consequently, tsetse control operations might unleash enhanced invasion of areas cleared of tsetse, prejudicing the long-term success of control campaigns. We demonstrate that NDDD in tsetse is an artefact consequent on multiple errors of analysis and interpretation. The most serious of these errors stems from a fundamental misunderstanding of the way in which traps sample tsetse, resulting in huge errors in estimates of the areas sampled by the traps, and occupied by the subpopulations being sampled. Errors in census population estimates are made worse through failure to adjust for variations in trapping intensity, trap performance, and in capture probabilities between geographical situations, and between tsetse species. The errors result in the appearance of NDDD, even in modelling situations where rates of dispersal are expressly assumed independent of population density. We reject the NDDD hypothesis and caution that the idea should not be allowed to influence policy on tsetse and trypanosomiasis control.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3