Lightweight Reinforcement Algorithms for autonomous, scalable intra-cortical Brain Machine Interfaces

Author:

Shaikh ShoebORCID,So Rosa,Sibindi Tafadzwa,Libedinsky Camilo,Basu Arindam

Abstract

AbstractIntra-cortical Brain Machine Interfaces (iBMIs) with wireless capability could scale the number of recording channels by integrating an intention decoder to reduce data rates. However, the need for frequent retraining due to neural signal non-stationarity is a big impediment. This paper presents an alternate paradigm of online reinforcement learning (RL) with a binary evaluative feedback in iBMIs to tackle this issue. This paradigm eliminates time-consuming calibration procedures. Instead, it relies on updating the model on a sequential sample-by-sample basis based on an instantaneous evaluative binary feedback signal. However, batch updates of weight in popular deep networks is very resource consuming and incompatible with constraints of an implant. In this work, using offline open-loop analysis on pre-recorded data, we show application of a simple RL algorithm - Banditron -in discrete-state iBMIs and compare it against previously reported state of the art RL algorithms – Hebbian RL, Attention gated RL, deep Q-learning. Owing to its simplistic single-layer architecture, Banditron is found to yield at least two orders of magnitude of reduction in power dissipation compared to state of the art RL algorithms. At the same time, post-hoc analysis performed on four pre-recorded experimental datasets procured from the motor cortex of two non-human primates performing joystick-based movement-related tasks indicate Banditron performing significantly better than state of the art RL algorithms by at least 5%, 10%, 7% and 7% in experiments 1, 2, 3 and 4 respectively. Furthermore, we propose a non-linear variant of Banditron, Banditron-RP, which gives an average improvement of 6%, 2% in decoding accuracy in experiments 2,4 respectively with only a moderate increase in power consumption.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3