The transcription factor FoxO1 is required for the establishment of the human definitive endoderm

Author:

Nord Joshua,Schill Daniel,Pulakanti Kirthi,Rao Sridhar,Cirillo Lisa Ann

Abstract

AbstractThe transcription factor FoxO1 has been shown to dynamically regulate cell fate across diverse cell types. Here, we employ a human induced pluripotent stem cell (hiPSC)-to-hepatocyte differentiation system that recapitulates the process of hepatocyte specification and differentiation in the human embryo to investigate FoxO1 as a participant in the molecular events required to execute the initial stages of liver development. We demonstrate that FoxO1 is expressed in hiPSC and at all stages of hepatocyte differentiation: definitive endoderm, specified hepatocytes, immature hepatoblasts, and mature hepatocyte-like cells. Disruption of FoxO1 activity by addition of the small molecule inhibitor AS1842856 at the beginning of the differentiation protocol abolishes the formation of definitive endoderm, as indicated by the loss of endoderm gene expression and the gain in expression of multiple mesoderm genes. Moreover, we show that FoxO1 binds to the promoters of two genes with important roles in endoderm differentiation whose expression is significantly downregulated in AS1842856 treated versus untreated cells. These findings reveal a new role for FoxO1 as an essential transcriptional regulator for the establishment of definitive endoderm in humans.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3