Abstract
AbstractUncovering signaling links or cascades among proteins that potentially regulate tumor development and drug response is one of the most critical and challenging tasks in cancer molecular biology. Inhibition of the targets on the core signaling cascades can be effective as novel cancer treatment regimens. However, signaling cascades inference remains an open problem, and there is a lack of effective computational models. The widely used gene co-expression network (no-direct signaling cascades) and shortest-path based protein-protein interaction (PPI) network analysis (with too many interactions, and did not consider the sparsity of signaling cascades) were not specifically designed to predict the direct and sparse signaling cascades. To resolve the challenges, we proposed a novel deep learning model, deepSignalingLinkNet, to predict signaling cascades by integrating transcriptomics data and copy number data of a large set of cancer samples with the protein-protein interactions (PPIs) via a novel deep graph neural network model. Different from the existing models, the proposed deep learning model was trained using the curated KEGG signaling pathways to identify the informative omics and PPI topology features in the data-driven manner to predict the potential signaling cascades. The validation results indicated the feasibility of signaling cascade prediction using the proposed deep learning models. Moreover, the trained model can potentially predict the signaling cascades among the new proteins by transferring the learned patterns on the curated signaling pathways. The code was available at: https://github.com/fuhaililab/deepSignalingPathwayPrediction.
Publisher
Cold Spring Harbor Laboratory
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献