Derivation of an electronic frailty index for short-term mortality in heart failure: a machine learning approach

Author:

Ju Chengsheng,Zhou Jiandong,Lee Sharen,Tan Martin Sebastian,Liu Ying,Zhang Yuhui,Liu Tong,Chan Esther WY,Kei Wong Ian Chi,Wei Li,Zhang QingpengORCID,Tse Gary

Abstract

AbstractObjectiveFrailty may be found in heart failure patients especially in the elderly and is associated with a poor prognosis. However, assessment of frailty status is time-consuming and the electronic frailty indices developed using health records have served as useful surrogates. We hypothesized that an electronic frailty index developed using machine learning can improve short-term mortality prediction in patients with heart failure.MethodsThis was a retrospective observational study included patients admitted to nine public hospitals for heart failure from Hong Kong between 2013 and 2017. Age, sex, variables in the modified frailty index, Deyo’s Charlson comorbidity index (≥2), neutrophil-to-lymphocyte ratio (NLR) and prognostic nutritional index (PNI) were analyzed. Gradient boosting, which is a supervised sequential ensemble learning algorithm with weak prediction submodels (typically decision trees), was applied to predict mortality. Comparisons were made with decision tree and multivariate logistic regression.ResultsA total of 8893 patients (median: age 81, Q1-Q3: 71-87 years old) were included, in whom 9% had 30-day mortality and 17% had 90-day mortality. PNI, age and NLR were the most important variables predicting 30-day mortality (importance score: 37.4, 32.1, 20.5, respectively) and 90-day mortality (importance score: 35.3, 36.3, 14.6, respectively). Gradient boosting significantly outperformed decision tree and multivariate logistic regression (area under the curve: 0.90, 0.86 and 0.86 for 30-day mortality; 0.92, 0.89 and 0.86 for 90-day mortality).ConclusionsThe electronic frailty index based on comorbidities, inflammation and nutrition information can readily predict mortality outcomes. Their predictive performances were significantly improved by gradient boosting techniques.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3