Abstract
AbstractThe life cycles of African trypanosomes are dependent on several differentiation steps, where parasites transition between replicative and non-replicative forms specialised for infectivity and survival in mammal and tsetse fly hosts. Here, we use single cell transcriptomics (scRNA-seq) to dissect the asynchronous differentiation of replicative slender to transmissible stumpy bloodstream form Trypanosoma brucei. Using oligopeptide-induced differentiation, we accurately modelled stumpy development in vitro and captured the transcriptomes of 9,344 slender and stumpy stage parasites, as well as parasites transitioning between these extremes. Using this framework, we detail the relative order of biological events during development, profile dynamic gene expression patterns and identify putative novel regulators. Using marker genes to deduce the cell cycle phase of each parasite, we additionally map the cell cycle of proliferating parasites and position stumpy cell cycle exit at early G1, with subsequent progression to a distinct G0 state. We also explored the role of one gene, ZC3H20, with transient elevated expression at the key slender to stumpy transition point. By scRNA-seq analysis of ZC3H20 null parasites exposed to oligopeptides and mapping the resulting transcriptome to our atlas of differentiation, we identified the point of action for this key regulator. Using a developmental transition relevant for both virulence in the mammalian host and disease transmission, our data provide a paradigm for the temporal mapping of differentiation events and regulators in the trypanosome life cycle.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献