Canonical TGFβ signaling induces collective invasion in colorectal carcinogenesis through a Snail1- and Zeb1-independent partial EMT

Author:

Flum Marion,Dicks Severin,Schrempp Monika,Nyström Alexander,Boerries Melanie,Hecht AndreasORCID

Abstract

AbstractLocal invasion is the initial step towards metastasis, the main cause of cancer mortality. In human colorectal cancer (CRC), malignant cells predominantly invade as cohesive collectives, and may undergo partial epithelial-mesenchymal transition (pEMT) at the invasive front. How this particular mode of stromal infiltration is generated is unknown. Here we investigated the impact of oncogenic transformation and the microenvironment on tumor cell invasion using genetically engineered organoids as CRC models. We found that inactivation of the Apc tumor suppressor combined with expression of oncogenic KrasG12D and dominant negative Trp53R172H did not cell-autonomously induce invasion in vitro. However, oncogenic transformation primed organoids for activation of a collective invasion program upon exposure to the prototypical microenvironmental factor TGFβ1. Execution of this program co-depended on a permissive extracellular matrix which was further actively remodeled by invading organoids. Although organoids shed some epithelial properties particularly at the invasive edge, TGFβ1-stimulated organoids largely maintained epithelial gene expression while additionally implementing a mesenchymal transcription pattern, resulting in a pEMT phenotype that did not progress to a fully mesenchymal state. Induction of this stable pEMT required canonical, Smad4-mediated TGFβ signaling, whereas the EMT master regulators Snail1 and Zeb1 were dispensable. Gene expression profiling provided further evidence for pEMT of TGFβ1-treated organoids and showed that their transcriptomes resemble those of human poor prognosis CMS4 cancers which likewise exhibit pEMT features. We propose that collective invasion in colorectal carcinogenesis is triggered by microenvironmental stimuli through activation of a novel, transcription-mediated form of non-progressive pEMT independently of classical EMT regulators.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3