scRNA-seq-based analysis of skeletal muscle response to denervation reveals selective activation of muscle-resident glial cells and fibroblasts

Author:

Nicoletti C,Wei X,Etxaniz U.,Proietti D,Madaro L.,Puri P.L.

Abstract

SummaryDevelopmental synaptogenesis toward formation of neuromuscular junctions (NMJs) is regulated by the reciprocal exchange of signals derived from nerve or muscle ends, respectively. These signals are re-deployed in adult life to repair NMJ lesions. The emerging heterogeneity of skeletal muscle cellular composition and the functional interplay between different muscle-resident cell types activated in response to homeostatic perturbations challenge the traditional notion that muscle-derived signals uniquely derive from myofibers. We have used single cell RNA sequencing (scRNA-seq) for a longitudinal analysis of gene expression profiles in cells isolated from skeletal muscles subjected to denervation by complete sciatic nerve transection. Our data show that, unlike muscle injury, which massively activates multiple muscle-resident cell types, denervation selectively induced the expansion of two cell types - muscle glial cells and activated fibroblasts. These cells were also identified as putative sources of muscle-derived signals implicated in NMJ repair and extracellular matrix (ECM) remodelling. Pseudo-time analysis of gene expression in muscle glial-derived cells at sequential timepoints post-denervation revealed an initial bifurcation into distinct processes related to either cellular de-differentiation and commitment to specialized cell types, such as Schwann cells, or ECM remodeling. However, at later time points muscle glial-derived cells appear to adopt a more uniform pattern of gene expression, dominated by a reduction of neurogenic signals. Consensual activation of pro-fibrotic and pro-atrophic genes from fibroblasts and other muscle-resident cell types suggests a global conversion of denervated muscles into an environment hostile for NMJ repair, while conductive for progressive development of fibrosis and myofiber atrophy.

Publisher

Cold Spring Harbor Laboratory

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3