Abstract
SummaryAlternative splicing is critical for animal ontogeny; however, its role in the earliest developmental decision, the specification of the three embryonic germ layers, is poorly understood. By performing RNA-Seq on human embryonic stem cells (hESCs) and derived definitive endoderm, cardiac mesoderm, and ectoderm cell lineages, we detect distinct alternative splicing programs associated with each lineage, with the largest splicing differences observed between definitive endoderm and cardiac mesoderm. Integrative multiomics analyses predict lineage-specific RNA binding protein regulators, including a prominent role for Quaking (QKI) in the specification of cardiac mesoderm. Remarkably, knockout of QKI in hESCs disrupts the cardiac mesoderm-associated alternative splicing program and formation of myocytes, likely in part through reduced expression of BIN1 splice variants linked to cardiac development. Our results thus uncover alternative splicing programs associated with the three germ lineages and highlight an important role for QKI and its target transcripts in the formation of cardiac mesoderm.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献