Molecular recognition of sugar binding in a melibiose transporter MelB by X-ray crystallography

Author:

Guan LanORCID,Hariharan ParameswaranORCID

Abstract

AbstractThe symporter melibiose permease MelB is the best-studied representative from MFS_2 family and the only protein in this large family with crystal structure determined. Previous thermodynamic studies show that MelB utilizes a cooperative binding as the core mechanism for its obligatory symport. Here we present two sugar-bound X-ray crystal structures of aSalmonella typhimuriumMelB D59C uniport mutant that binds and catalyzes melibiose transport uncoupled to either cation, as determined by biochemical and biophysical characterizations. The two structures with bound nitrophenyl-α-D-galactoside or dodecyl-β-D-melibioside, which were refined to a resolution of 3.05 or 3.15 Å, respectively, are virtually identical at an outward-facing conformation; each one contains a α-galactoside molecule in the middle of protein. In the substrate-binding site, the galactosyl moiety on both ligands are at an essentially same configuration, so a galactoside specificity determinant pocket can be recognized, and hence the molecular recognition mechanism for the binding of sugar in MelB is deciphered. The data also allow to assign the conserved cation-binding pocket, which is directly connected to the sugar specificity determinant pocket. The intimate connection between the two selection sites lays the structural basis for the cooperative binding and coupled transport. This key structural finding answered the long-standing question on the substrate binding for the Na+-coupled MFS family of transporters.SignificanceMajor facilitator superfamily_2 transporters contain >10,000 members that are widely expressed from bacteria to mammalian cells, and catalyze uptake of varied nutrients from sugars to phospholipids. While several crystal structures with bound sugar for other MFS permeases have been determined, they are either uniporters or symporters coupled solely to H+. MelB catalyzes melibiose symport with either Na+, Li+, or H+, a prototype for Na+-coupled MFS transporters, but its sugar recognition has been a long-unsolved puzzle. Two high-resolution crystal structures presented here clearly reveal the molecular recognition mechanism for the binding of sugar in MelB. The substrate-binding site is characterized with a small specificity groove adjoining a large nonspecific cavity, which could offer a potential for future exploration of active transporters for drug delivery.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3