Road salt compromises functional morphology of larval gills in populations of an amphibian

Author:

Szeligowski Richard V.,Scanley Jules A.,Broadbridge Christine C.,Brady Steven P.

Abstract

AbstractThroughout much of the world, winter deicing practices have led to secondary salinization of freshwater habitats, where numerous taxa are vulnerable to elevated salinity. Many amphibians are of particular concern because of their permeable skin and reliance on small ponds and pools, where salinity levels can be high. The early life-history stages of amphibians that develop in these habitats are especially sensitive to salt exposure. Larvae developing in salt-polluted environments must osmoregulate through ion exchange in gills. While salt-induced changes to the physiology of ion exchange in amphibian gills is generally understood, functionally relevant changes in gill morphology remain poorly described. Yet the structure of gills should be an important component affecting their ionoregulatory capacity, for instance in terms available surface area. Larval amphibian gills also play critical roles in gas exchange and foraging. Thus, changes in gill morphology due to salt pollution potentially affect not only osmoregulation, but also respiration and feeding. Here, we used a chronic exposure experiment to quantify the effect of salinity on larval gill morphology in populations of the wood frog (Rana sylvatica). We measured a suite of morphological traits on gill tufts, where ionoregulation and gas exchange occur, and on gill filters, which are used in feeding. Larvae raised in high salinity conditions had gill tufts with lower surface area to volume ratio, while epithelial cells on these tufts were less circular but occurred at higher densities. Gill filters showed increased spacing, which can potentially reduce their efficiency in filtering food particles. Together, these changes seem likely to diminish the ionoregulatory and respiratory capacity of gill tufts, and compromise feeding functionality of gill filters. Thus, a singular change in the aquatic environment from a widespread pollutant has the potential to generate a suite of consequences via changes in gill morphology. Critically, this suite of negative effects is likely most detrimental in salinized environments, where ionoregulatory demands are higher, which in turn should increase respiratory demands along with energy acquisition demands through foraging.Summary StatementChronic road salt exposure alters the functional morphology of gills in larval amphibians, potentially compromising osmoregulation, feeding, and respiration.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3