A Guide to Pre-Processing High-Throughput Animal Tracking Data

Author:

Gupte Pratik RajanORCID,Beardsworth Christine E.ORCID,Spiegel OrrORCID,Lourie Emmanuel,Toledo SivanORCID,Nathan RanORCID,Bijleveld Allert I.ORCID

Abstract

AbstractModern, high-throughput animal tracking studies collect increasingly large volumes of data at very fine temporal scales. At these scales, location error can exceed the animal’s step size, leading to mis-estimation of key movement metrics such as speed. ‘Cleaning’ the data to reduce location errors prior to analyses is one of the main ways movement ecologists deal with noisy data, and has the advantage of being more scalable to massive datasets than more complex methods. Though data cleaning is widely recommended, and ecologists routinely consider cleaned data to be the ground-truth, inclusive uniform guidance on this crucial step, and on how to organise the cleaning of massive datasets, is still rather scarce.A pipeline for cleaning massive high-throughput datasets must balance ease of use and computationally efficient signal vs. noise screening, in which location errors are rejected without discarding valid animal movements. Another useful feature of a pre-processing pipeline is efficiently segmenting and clustering location data for statistical methods, while also being scalable to large datasets and robust to imperfect sampling. Manual methods being prohibitively time consuming, and to boost reproducibility, a robust pre-processing pipeline must be automated.In this article we provide guidance on building pipelines for pre-processing high-throughput animal tracking data in order to prepare it for subsequent analysis. Our recommended pipeline, consisting of removing outliers, smoothing the filtered result, and thinning it to a uniform sampling interval, is applicable to many massive tracking datasets. We apply this pipeline to simulated movement data with location errors, and also show a case study of how large volumes of cleaned data can be transformed into biologically meaningful ‘residence patches’, for quick biological inference on animal space use. We use calibration data to illustrate how pre-processing improves its quality, and to verify that the residence patch synthesis accurately captures animal space use. Finally, turning to tracking data from Egyptian fruit bats (Rousettus aegyptiacus), we demonstrate the pre-processing pipeline and residence patch method in a fully worked out example.To help with fast implementation of standardised methods, we developed the R package atlastools, which we also introduce here. Our pre-processing pipeline and atlastools can be used with any high-throughput animal movement data in which the high data-volume combined with knowledge of the tracked individuals’ movement capacity can be used to reduce location errors. The atlastools function is easy to use for beginners, while providing a template for further development. The use of common pre-processing steps that are simple yet robust promotes standardised methods in the field of movement ecology and leads to better inferences from data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3