Humans use minimum cost movements in a whole-body task

Author:

Liu Lijia,Ballard Dana,Hayhoe Mary

Abstract

AbstractHumans have elegant bodies that allow gymnastics, piano playing, and tool use, but understanding how they do this in detail is difficult because their musculoskeletal systems are extraordinarily complicated. Nonetheless, common movements like walking and reaching can be stereotypical, and a very large number of studies have shown their movement cost a major factor. In contrast, one might think that general movements are very individuated and intractable, but a recent study has shown that in an arbitrary set of whole-body movements used to trace large-scale closed curves, near-identical posture sequences were chosen across different subjects, both in the average trajectories of the body’s limbs and in the variance within trajectories. The commonalities in that result motivate explanations for its generality. One possibility could be that humans also choose trajectories that are economical in energetic cost. To test this hypothesis, we situate the tracing data within a fifty degree of freedom dynamic model of the human skeleton that allows the computation of movement cost. Comparing the model movement cost data from nominal tracings against various perturbed tracings shows that the latter are more energetically expensive, inferring that the original traces were chosen on the basis of minimum cost.

Publisher

Cold Spring Harbor Laboratory

Reference50 articles.

1. Computational approaches to motor control

2. Optimality principles in sensorimotor control

3. Energy-speed relation and optimal speed during level walking;Internationale Zeitschrift für Angewandte Physiologie Einschliesslich Arbeitsphysiologie,1958

4. THE ENERGY EXPENDITURE AND MECHANICAL ENERGY DEMAND IN WALKING

5. Optimization of energy expenditure during level walking

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3