A novel deep-sea bacterial threonine dehydratase drives cysteine desulfuration and hydrogen sulfide production

Author:

Ma Ning,Sun Yufan,Zhang Wen,Sun ChaominORCID

Abstract

ABSTRACTCysteine desulfuration is one of the main ways for hydrogen sulfide (H2S) generation in cells and is usually conducted by cystathionine γ-lyase. Herein, we describe a newly discovered deep-sea bacterial threonine dehydratase (psTD), which is surprisingly discovered to drive L-cysteine desulfuration. The mechanisms of psTD catalyzing cysteine desulfuration towards H2S production are first clarified in vitro and in vivo through a combination of genetic and biochemical methods. Furthermore, based on the solved structures of psTD and its various mutants, two or three pockets are found in the active site of psTD, and switch states between inward and outward orientation of a key amino acid R77 determine the open or close status of Pocket III for small molecule exchanges, which further facilitates cysteine desulfuration. Our results reveal the functional diversity and structural specificity of psTD towards L-cysteine desulfuration and H2S formation. Given the broad distribution of psTD homologs in different bacteria, we speculate that some threonine dehydratases have evolved a novel function towards cysteine desulfuration, which benefits the producer to utilize cysteine as a sulfur source for better adapting external environments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3