Redox Imbalance and Biochemical Changes in Cancer by probing redox-sensitive mitochondrial cytochromes in label-free visible resonance Raman imaging

Author:

Abramczyk H.ORCID,Brozek-Pluska B.ORCID,Kopec M.ORCID,Błaszczyk M.ORCID,Radek M.ORCID

Abstract

AbstractBackgroundTo monitoring redox state changes and biological mechanisms occurring in mitochondrial cytochromes in cancers improving novel methods are required.MethodsWe used Raman spectroscopy and Raman imaging to monitor changes in the redox state of the mitochondrial cytochromes in ex vivo human brain and breast tissues at 532 nm, 633 nm, 785 nm.ResultsWe identified the oncogenic processes that characterize human infiltrating ductal carcinoma (IDC) and human brain tumors: gliomas; astrocytoma and medulloblastoma based on the quantification of cytochrome redox status by exploiting the resonance-enhancement effect of Raman scattering. We visualized localization of cytochromes by Raman imaging in the breast and brain tissues and analyzed cytochrome c vibrations at 750, 1126, 1337 and 1584 cm-1 as a function of malignancy grade. We found that the concentration of reduced cytochrome c becomes abnormally high in human brain tumors and breast cancers and correlates with the grade of cancer aggressiveness.ConclusionsWe showed that Raman imaging provides additional insight into the biology of astrocytomas and breast ductal invasive cancer, which can be used for noninvasive grading, differential diagnosis, delineation of tumor extent, planning of surgery, and radiotherapy and post-treatment monitoring.Simple SummaryGliomas comprise around 30% of human brain tumors, while invasive ductal carcinoma (IDC) comprises around 80% of human breast cancers. The aim of our study was to show that cancerogenesis affects the redox status of mitochondrial cytochromes, which can be tracked by using Raman spectroscopy and imaging. We have shown the correlation between the intensity of cytochromes Raman bands at 750, 1126, 1337 and 1584 cm-1 and malignancy grade for brain and breast cancers.Graphical Abstract

Publisher

Cold Spring Harbor Laboratory

Reference48 articles.

1. American Cancer Society | Information and Resources about for Cancer: Breast, Colon, Lung, Prostate, Skin. https://www.cancer.org.

2. Information, Awareness & Donations. National Breast Cancer Foundation https://www.nationalbreastcancer.org/.

3. Johns Hopkins Medicine, based in Baltimore, Maryland. https://www.hopkinsmedicine.org/.

4. Metabolic Reprogramming in Glioma;Front. Cell Dev. Biol,2017

5. Contribution by different fuels and metabolic pathways to the total ATP turnover of proliferating MCF-7 breast cancer cells

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3