The Utilization of Advance Telemetry to Investigate Important Physiological Parameters Including Electroencephalography in Cynomolgus Macaques Following Aerosol Challenge with Eastern Equine Encephalitis Virus

Author:

Trefry John C,Rossi Franco D,Accardi Michael V,Dorsey Brandi L,Sprague Thomas R,Wollen-Roberts Suzanne E,Shamblin Joshua D,Kimmel Adrienne E,Glass Pamela J,Miller Lynn J,Cardile Anthony P,Smith Darci R,Bavari Sina,Authier Simon,Pratt William D,Pitt Margaret L,Nasar Farooq

Abstract

ABSTRACTMost alphaviruses are mosquito-borne and can cause severe disease in humans and domesticated animals. In North America, eastern equine encephalitis virus (EEEV) is an important human pathogen with case fatality rates of 30-90%. Currently, there are no therapeutics or vaccines to treat and/or prevent human infection. One critical impediment in countermeasure development is the lack of insight into clinically relevant parameters in a susceptible animal model. This study examined the disease course of EEEV in a cynomolgus macaque model utilizing advanced telemetry technology to continuously and simultaneously measure temperature, respiration, activity, heart rate, blood pressure, electrocardiogram (ECG), and electroencephalography (EEG) following an aerosol challenge at 7.0 log10 PFU. Following challenge, all parameters were rapidly and substantially altered with peak alterations from baseline ranged as follows: temperature (+3.0-4.2 °C), respiration rate (+56-128%), activity (+15-76% daytime and +5-22% nighttime), heart rate (+67-190%), systolic (+44-67%) and diastolic blood pressure (+45-80%). Cardiac abnormalities comprised of alterations in QRS and PR duration, QTc Bazett, T wave morphology, amplitude of the QRS complex, and sinoatrial arrest. An unexpected finding of the study was the first documented evidence of a critical cardiac event as an immediate cause of euthanasia in one NHP. All brain waves were rapidly (12-24 hpi) and profoundly altered with increases of up to 6,800% and severe diffuse slowing of all waves with decreases of ∼99%. Lastly, all NHPs exhibited disruption of the circadian rhythm, sleep, and food/fluid intake. Accordingly, all NHPs met the euthanasia criteria by ∼106-140 hpi. This is the first of its kind study utilizing state of the art telemetry to investigate multiple clinical parameters relevant to human EEEV infection in a susceptible cynomolgus macaque model. The study provides critical insights into EEEV pathogenesis and the parameters identified will improve animal model development to facilitate rapid evaluation of vaccines and therapeutics.Author SummaryIn North America, EEEV causes the most severe mosquito-borne disease in humans highlighted by fatal encephalitis and permeant debilitating neurological sequelae in survivors. The first confirmed human cases were reported more than 80 years ago and since then multiple sporadic outbreaks have occurred including one of the largest in 2019. Unfortunately, most human infections are diagnosed at the on-set of severe neurological symptoms and consequently a detailed disease course in humans is lacking. This gap in knowledge is a significant obstacle in the development of appropriate animal models to evaluate countermeasures. Here, we performed a cutting-edge study by utilizing a new telemetry technology to understand the course of EEEV infection in a susceptible macaque model by measuring multiple physiological parameters relevant to human disease. Our study demonstrates that the infection rapidly produces considerable alterations in many critical parameters including the electrical activity of the heart and the brain leading to severe disease. The study also highlights the extraordinary potential of new telemetry technology to develop the next generation of animal models in order to comprehensively investigate pathogenesis as well as evaluate countermeasures to treat and/or prevent EEEV disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3