Current forecast of COVID-19: a Bayesian and Machine Learning approaches

Author:

Prieto Kernel

Abstract

AbstractWe address the estimation of the effective reproductive numberRtbased on serological data using Bayesian inference. We also explore the Bayesian learning paradigm to estimateRt. We calculateRtfor the top five most affected principal regions of Mexico. We present a forecast of the spread of coronavirus in Mexico based on a contact tracing model using Bayesian inference inspired in a data-driven approach. We investigate the health profile of individuals diagnosed with coronavirus in order to predict their type of patient care (inpatient or outpatient) and survival. Specifically, we analyze the comorbidity associated with coronavirus using Machine Learning. We implemented two classifiers, the first one, to predict the type of care procedure a diagnosed person with coronavirus presenting chronic diseases will obtain: outpatient or hospitalized. Second one, a classifier for the survival of the patient: survived or deceased. We present two techniques to deal with these kinds of unbalanced dataset related with outpatient/hospitalized and survived/deceased cases, occurring in general for these type coronavirus datasets in the world, in order obtain to a better performance for the classification.

Publisher

Cold Spring Harbor Laboratory

Reference64 articles.

1. Covid-19 Mexico. https://coronavirus.gob.mx/datos/.1,2,2,3.2,3.2,4

2. worldometers. https://www.worldometers.info/world-population/mexico-population/. 2

3. Acunã Zegarra, M. , Comas-García, A. , Hernández-Vargas, E. , Santana-Cibrian, M. , and Velasco-Hernández, J. (2020). The SARS-CoV-2 epidemic outbreak: a review of plausible scenarios of containment and mitigation for Mexico. medRxiv.2, 3.1, 3.2

4. Adhikari, R. and Bolitho, A. e. a. (2020). Inference, prediction and optimization of non-pharmaceutical interventions using compartment models: the PyRoss library. arXiv e-prints. 1

5. Alavez-Ramirez, J. (2007). Estimacion de parámetros en ecuaciones diferenciales ordinarias: identificabilidad y aplicaciones a medicina. Revista electrónica de contenido matemático, 21. 3.2

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3