Chameleon microRNAs in breast cancer: their elusive role as regulatory factors in cancer progression

Author:

Miglioli CesareORCID,Bakalli GaetanORCID,Orso SamuelORCID,Karemera Mucyo,Molinari RobertoORCID,Guerrier Stéphane,Mili NabilORCID

Abstract

AbstractBreast cancer is one of the most frequent cancers affecting women. Non-coding micro RNAs (miRNAs) seem to play an important role in the regulation of pathways involved in tumor occurrence and progression. Extending on the research in Haakensen et al., where significant miRNAs were selected as being associated with the progression from normal breast tissue to breast cancer, in this work we put forward 112 sets of miRNA combinations, each including at most 5 expressions with high accuracy in discriminating healthy breast tissue from breast carcinoma. Our results are based on a recently developed machine learning technique which, instead of selecting a single model (or combination of features), delivers a set of models with equivalent predictive capabilities that allow to interpret and visualize the interaction of these features. These results shed new light on the biological action of the selected miRNAs which can behave in different ways according to the miRNA network with which they interact.Indeed, these revealed connections may contribute to explain why, in some cases, different studies attribute opposite functions to the same miRNA. It is therefore possible to understand how the role of a genomic variable may change when considered in interaction with other sets of variables, as opposed to only considering its effect when it is evaluated within a unique combination of features. The approach proposed in this work provides a statistical basis for the notion of chameleon miRNAs and is inspired by the emerging field of systems biology.Author SummaryThe notion of a single predictive genomic (statistical) model is replaced by that of a set of models that can be considered as exchangeable due to their indistinguishable (optimal) predictive abilities;Our results indicate that the role of miRNAs cannot be interpreted independently from the combination of features with which they interact and can therefore vary considerably when considered in a network of different combinations. Some miRNAs may act as chameleons and behave in opposite manners thereby showing some kind of antagonistic duality;Some miRNAs are exchangeable inside models with equivalent predictive ability and seem to point to latent biological functions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3