Anatomically informed multi-level fiber tractography

Author:

Zhylka AndreyORCID,Leemans AlexanderORCID,Pluim JosienORCID,De Luca AlbertoORCID

Abstract

AbstractDiffusion weighted MR imaging can assist preoperative planning by reconstructing the trajectory of eloquent fiber pathways. A common task is the delineation of the corticospinal tract in its full extent because lesions to this bundle can severely affect the quality of life. However, this is challenging as existing tractography algorithms typically produce either incomplete results or multiple false-positive tracts. In this work, we suggest a novel approach to fiber tractography that reconstructs multi-level structures by progressively taking into account previously unused fiber orientations. Anatomical priors are used in order to minimize the number of false-positive pathways. The devised method was evaluated on synthetic data with different noise levels. Additionally, it was tested on in-vivo data by reconstructing the corticospinal tract and it was compared to conventional deterministic and probabilistic approaches. The corticospinal tract reconstructed by our method includes lateral projections that could not be observed with deterministic methods, while avoiding spurious tracts reconstructed by probabilistic tractography. Furthermore, the proposed algorithm preserves the neuroanatomical topology of the pathways to a larger extent as compared to probabilistic tractography.

Publisher

Cold Spring Harbor Laboratory

Reference61 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3