Theory and simulations for crowding-induced changes in stability of proteins with applications to λ repressor

Author:

Denesyuk Natalia A.,Thirumalai D.

Abstract

AbstractExperiments and theories have shown that when steric interactions between crowding particles and proteins are dominant, which give rise to Asakura-Oosawa depletion forces, then the stabilities of the proteins increase compared to the infinite dilution case. We show using theoretical arguments that the crowder volume fraction (ΦC) dependent increase in the melting temperature of globular proteins, , where . The effective Flory exponent, νeff, relates the radius of gyration in the unfolded state to the number of amino acid residues in the protein. We derive the bound 1.25 ≤ α ≤ 2.0. The theoretical predictions are confirmed using molecular simulations of λ repressor in the presence of spherical crowding particles. Analyses of previous simulations and experiments confirm the predicted theoretical bound for α. We show that the non-specific attractions between crowding particles and amino acid residues have to be substantial to fully negate the enhanced protein stabilities due to intra protein attractive Asakura-Oosawa (AO) depletion potential. Using the findings, we provide an alternate explanation for the very modest (often less than 0.5 Kcal/mol) destabilization in certain proteins in the cellular milieu. Cellular environment is polydisperse containing large and small crowding agents. AO arguments suggest that proteins would be localized between large (sizes exceeding that of the proteins) crowders, which are predicted to have negligible effect on stability. In vitro experiments containing mixtures of crowding particles could validate or invalidate the predictions.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Macromolecular Crowding Is More than Hard-Core Repulsions;Annual Review of Biophysics;2022-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3