Antigen-driven clonal selection shapes the persistence of HIV-1 infected CD4+T cellsin vivo

Author:

Simonetti Francesco R.ORCID,Zhang Hao,Soroosh Garshasb P.,Duan Jiayi,Rhodehouse Kyle,Hill Alison L.,Beg Subul A.,McCormick Kevin,Raymond Hayley,Nobles Christopher L.,Everett John,Kwon Kyungyoon J.,White Jennifer A.,Lai Jun,Margolick Joseph B.,Hoh Rebecca,Deeks Steven G.ORCID,Bushman Frederic D.ORCID,Siliciano Janet D.,Siliciano Robert F.

Abstract

AbstractClonal expansion of infected CD4+T cells is a major mechanism of HIV-1 persistence and a barrier to cure. Potential causes are homeostatic proliferation, effects of HIV-1 integration, and interaction with antigens. Here we show that it is possible to link antigen responsiveness, full proviral sequence, integration site, and T cell receptor β-chain (TCRβ) sequence to examine the role of recurrent antigenic exposure in maintaining the HIV-1 reservoir. We isolated Cytomegalovirus (CMV)- and Gag-responding CD4+T cells from 10 treated individuals. Proviral populations in CMV-responding cells were dominated by large clones, including clones harboring replication-competent proviruses. TCRβ repertoires showed high clonality driven by converging adaptive responses. Although some proviruses were in genes linked to HIV-1 persistence (BACH2,STAT5B, MKL1), proliferation of infected cells under antigenic stimulation occurred regardless of the site of integration. Paired TCRβ-integration site analysis showed that infection could occur early or late in the course of a clone’s response to antigen and could generate infected cell populations too large to be explained solely by homeostatic proliferation. Together these findings implicate antigen-driven clonal selection as a major factor in HIV-1 persistence, a finding that will be a difficult challenge to eradication efforts.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3