Neuron tracing and quantitative analyses of dendritic architecture reveal symmetrical three-way-junctions and phenotypes of git-1 in C. elegans

Author:

Yuval Omer,Iosilevskii Yael,Meledin Anna,Podbilewicz BenjaminORCID,Shemesh Tom

Abstract

AbstractComplex dendritic trees are a distinctive feature of neurons. Alterations to dendritic morphology are associated with developmental, behavioral and neurodegenerative changes. The highly-arborized PVD neuron of C. elegans serves as a model to study dendritic patterning; however, quantitative, objective and automated analyses of PVD morphology are missing. Here, we present a method for neuronal feature extraction, based on deep-learning and fitting algorithms. The extracted neuronal architecture is represented by a database of structural elements for abstracted analysis. We obtain excellent automatic tracing of PVD trees and uncover that dendritic junctions are unevenly distributed. Surprisingly, these junctions are three-way-symmetrical on average, while dendritic processes are arranged orthogonally. We quantify the effect of mutation in git-1, a regulator of dendritic spine formation, on PVD morphology and discover a localized reduction in junctions. Our findings shed new light on PVD architecture, demonstrating the effectiveness of our objective analyses of dendritic morphology and suggest molecular control mechanisms.Author SummaryNerve cells (neurons) collect input signals via branched cellular projections called dendrites. A major aspect of the study of neurons, dating back over a century, involves the characterization of neuronal shapes and of their dendritic processes.Here, we present an algorithmic approach for detection and classification of the tree-like dendrites of the PVD neuron in C. elegans worms. A key feature of our approach is to represent dendritic trees by a set of fundamental shapes, such as junctions and linear elements. By analyzing this dataset, we discovered several novel structural features. We have found that the junctions connecting branched dendrites have a three-way-symmetry, although the dendrites are arranged in a crosshatch pattern; and that the distribution of junctions varies across distinct sub-classes of the PVD’s dendritic tree. We further quantified subtle morphological effects due to mutation in the git-1 gene, a known regulator of dendritic spines. Our findings suggest molecular mechanisms for dendritic shape regulation and may help direct new avenues of research.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3