Zebrafish Polycomb repressive complex-2 critical roles are largely Ezh2- over Ezh1-driven and concentrate during early embryogenesis

Author:

Yette Gabriel A.ORCID,Stewart Scott,Stankunas KrynORCID

Abstract

ABSTRACTPolycomb repressive complex-2 (PRC2) methylation of histone H3 lysine-27 (H3K27me) is associated with stable transcriptional repression. PRC2 famously silences Hox genes to maintain anterior-posterior segment identities but also enables early cell fate specification, restrains progenitor cell differentiation, and canalizes cell identities. Zebrafish PRC2 genetic studies have focused on ezh2, which, with its paralog ezh1, encodes the H3K27 methyltransferase component. ezh2 loss-of-function mutants reinforce essential vertebrate PRC2 functions during early embryogenesis albeit with limited contributions to body plan establishment. However, redundancy with ezh1 and the lethality of maternal-zygotic homozygous ezh2 nulls could obscure additional early developmental and organogenesis roles of PRC2. Here, we combine new and existing zebrafish ezh1 and ezh2 alleles to show collective maternal/zygotic ezh2 exclusively provides earliest embryonic PRC2 H3K27me3 activity. Zygotic ezh1, which becomes progressively expressed as ezh2 levels dissipate, has minor redundant and noncompensatory larval roles but itself is not required for viability or fertility. Zygotic Ezh2/PRC2 promotes correct craniofacial bone shape and size by maintaining proliferative pre-osteoblast pools. An ezh2 allelic series including disrupted maternal ezh2 uncovers axial skeleton homeotic transformations and pleiotropic organogenesis defects. Further, once past a critical early window, we show zebrafish can develop near normally with minimal bulk H3K27me3. Our results suggest Ezh2-containing PRC2 stabilizes rather than instructs early developmental decisions while broadly contributing to organ size and embellishment.

Publisher

Cold Spring Harbor Laboratory

Reference91 articles.

1. Divergent Requirements for EZH1 in Heart Development Versus Regeneration

2. A role for mel-18, a Polycomb group-related vertebrate gene, during theanteroposterior specification of the axial skeleton;Development (Cambridge, England),1996

3. Histone demethylases Kdm6ba and Kdm6bb redundantly promote cardiomyocyte proliferation during zebrafish heart ventricle maturation

4. The methyltransferases enhancer of zeste homolog (EZH) 1 and EZH2 control hepatocyte homeostasis and regeneration;FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology,2015

5. A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3