Abstract
AbstractRecent progress in single-cell genomics has generated multiple tools for cell clustering, annotation, and trajectory inference; yet, inferring their associated regulatory mechanisms is unresolved. Here we present scMomentum, a model-based data-driven formulation to predict gene regulatory networks and energy landscapes from single-cell transcriptomic data without requiring temporal or perturbation experiments. scMomentum provides significant advantages over existing methods with respect to computational efficiency, scalability, network structure, and biological application.AvailabilityscMomentum is available as a Python package at https://github.com/larisa-msoto/scMomentum.git
Publisher
Cold Spring Harbor Laboratory