Mutational and biophysical robustness in a pre-stabilized monobody

Author:

Chandler Peter G.ORCID,Tan Li Lynn,Porebski Benjamin T.ORCID,Green James S.,Riley Blake T.ORCID,Broendum Sebastian S.,Hoke David E.ORCID,Falconer Robert J.,Munro Trent P.ORCID,Buckle Malcolm,Jackson Colin J.,Buckle Ashley M.ORCID

Abstract

AbstractThe fibronectin type III (FN3) monobody domain is a promising non-antibody scaffold which features a less complex architecture than an antibody while maintaining analogous binding loops. We previously developed FN3Con, a hyper-stable monobody derivative with diagnostic and therapeutic potential. Pre-stabilization of the scaffold mitigates the stability-function trade-off commonly associated with evolving a protein domain towards biological activity. Here, we aimed to examine if the FN3Con monobody could take on antibody-like binding to therapeutic targets, while retaining its extreme stability. We targeted the first of the Adnectin derivative of monobodies to reach clinical trials, which was engineered by directed evolution for binding to the therapeutic target VEGFR2; however, this function was gained at the expense of large losses in thermostability and increased oligomerisation. In order to mitigate these losses, we grafted the binding loops from Adnectin-anti-VEGFR2 (CT-322) onto the pre-stabilized FN3Con scaffold to produce a domain that successfully bound with high affinity to the therapeutic target VEGFR2. This FN3Con-anti-VEGFR2 construct also maintains high thermostability, including remarkable long-term stability, retaining binding activity after 2 years of storage at 36 °C. Further investigations into buffer excipients doubled the presence of monomeric monobody in accelerated stability trials. These data suggest that loop grafting onto a pre-stabilized scaffold is a viable strategy for the development of monobody domains with desirable biophysical characteristics, and is therefore well-suited to applications such as the evolution of multiple paratopes or shelf-stable diagnostics and therapeutics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3