Abstract
AbstractThis paper describes preliminary work towards an automated algorithm for labelling Neuropixel data that exploits the fact that adjacent recording sites are spatially oversampled. This is achieved by combining classical single channel spike sorting with spatial spike grouping, resulting in an improvement in both accuracy and robustness. This is additionally complemented by an automated method for channel selection that determines which channels contain high quality data. The algorithm has been applied to a freely accessible dataset, produced by Cortex Lab, UCL. This has been evaluated to have a accuracy of over 77% compared to a manually curated ground truth.
Publisher
Cold Spring Harbor Laboratory