PISCES: a package for rapid quantitation and quality control of large scale mRNA-seq datasets

Author:

Shirley Matthew D.ORCID,Radhakrishna Viveksagar K.,Golji Javad,Korn Joshua M.

Abstract

AbstractPISCES eases processing of large mRNA-seq experiments by encouraging capture of metadata using simple textual file formats, processing samples on either a single machine or in parallel on a high performance computing cluster (HPC), validating sample identity using genetic fingerprinting, and summarizing all outputs in analysis-ready data matrices. PISCES consists of two modules: 1) compute cluster-aware analysis of individual mRNA-seq libraries including species detection, SNP genotyping, library geometry detection, and quantitation using salmon, and 2) gene-level transcript aggregation, transcriptional and read-based QC, TMM normalization and differential expression analysis of multiple libraries to produce data ready for visualization and further analysis.PISCES is implemented as a python3 package and is bundled with all necessary dependencies to enable reproducible analysis and easy deployment. JSON configuration files are used to build and identify transcriptome indices, and CSV files are used to supply sample metadata and to define comparison groups for differential expression analysis using DEseq2. PISCES builds on many existing open-source tools, and releases of PISCES are available on GitHub or the python package index (PyPI).

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3