Modeling intrahippocampal effects of anterior hippocampal hyperactivity relevant to schizophrenia using chemogenetic excitation of long axis-projecting mossy cells in the mouse dentate gyrus

Author:

Bauer James P.,Rader Sarah L.,Joffe Max E.,Kwon Wooseok,Quay Juliana,Seanez Leann,Zhou Chengwen,Conn P. Jeffrey,Lewis Alan S.ORCID

Abstract

ABSTRACTBackgroundThe anterior hippocampus of individuals with early psychosis or schizophrenia is hyperactive, as is the ventral hippocampus in rodent models for schizophrenia risk. Hyperactive ventral hippocampal projections to extrahippocampal brain regions contribute to schizophrenia symptoms, but less is known about the functional effects of hyperactive projections within the hippocampal formation long axis. We approached this question by testing whether hyperactivation of ventral dentate gyrus (DG) mossy cells (MCs), which densely project intrahippocampally to the dorsal DG, influences spatial memory, a cognition dependent on intact dorsal DG function.MethodsIn CD-1 mice, we targeted dorsal DG-projecting ventral DG MCs using an adeno-associated virus intersectional strategy. In vivo fiber photometry recording of ventral DG MCs was performed during exploratory behaviors. We targeted excitatory chemogenetic constructs to ventral DG MCs and tested whether their hyperactivation impaired encoding in a spatial memory task.ResultsVentral DG MCs were activated during behavior related to environmental information gathering (rearing) but not during non-exploratory motor behaviors. Ventral DG MCs made functional monosynaptic inputs to dorsal DG granule cells, with chemogenetic activation of ventral DG MCs leading to increased activity of dorsal DG granule cells. Finally, chemogenetic activation of ventral DG MCs during the encoding phase of an object location memory task impaired retrieval 24 hours later, without effects on locomotion or other exploratory behaviors.ConclusionsThese data suggest that localized hippocampal hyperactivity may have longitudinal intrahippocampal functional consequences, supporting study of longitudinal circuits as targets to mitigate cognitive deficits associated with schizophrenia.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3