The Gradient Clusteron: A model neuron that learns via dendritic nonlinearities, structural plasticity, and gradient descent

Author:

Moldwin ToviahORCID,Kalmenson Menachem,Segev IdanORCID

Abstract

AbstractSynaptic clustering on neuronal dendrites has been hypothesized to play an important role in implementing pattern recognition. Neighboring synapses on a dendritic branch can interact in a synergistic, cooperative manner via the nonlinear voltage-dependence of NMDA receptors. Inspired by the NMDA receptor, the single-branch clusteron learning algorithm (Mel 1991) takes advantage of location-dependent multiplicative nonlinearities to solve classification tasks by randomly shuffling the locations of “under-performing” synapses on a model dendrite during learning (“structural plasticity”), eventually resulting in synapses with correlated activity being placed next to each other on the dendrite. We propose an alternative model, the gradient clusteron, or G-clusteron, which uses an analytically-derived gradient descent rule where synapses are “attracted to” or “repelled from” each other in an input- and location- dependent manner. We demonstrate the classification ability of this algorithm by testing it on the MNIST handwritten digit dataset and show that, when using a softmax activation function, the accuracy of the G-clusteron on the All-vs-All MNIST task (∼85%) approaches that of logistic regression (∼93%). In addition to the location update rule, we also derive a learning rule for the synaptic weights of the G-clusteron (“functional plasticity”) and show that a G-clusteron that utilizes the weight update rule can achieve ∼89% accuracy on the MNIST task. We also show that a G-clusteron with both the weight and location update rules can learn to solve the XOR problem from arbitrary initial conditions.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3