Suboptimal human inference inverts the bias-variance trade-off for decisions with asymmetric evidence

Author:

Eissa Tahra LORCID,Gold Joshua I,Josić Krešimir,Kilpatrick Zachary PORCID

Abstract

AbstractSolutions to challenging inference problems are often subject to a fundamental trade-off between bias (being systematically wrong) that is minimized with complex inference strategies and variance (being oversensitive to uncertain observations) that is minimized with simple inference strategies. However, this trade-off is based on the assumption that the strategies being considered are optimal for their given complexity and thus has unclear relevance to the frequently suboptimal inference strategies used by humans. We examined inference problems involving rare, asymmetrically available evidence, which a large population of human subjects solved using a diverse set of strategies that were suboptimal relative to the Bayesian ideal observer. These suboptimal strategies reflected an inversion of the classic bias-variance trade-off: subjects who used more complex, but imperfect, Bayesian-like strategies tended to have lower variance but high bias because of incorrect tuning to latent task features, whereas subjects who used simpler heuristic strategies tended to have higher variance because they operated more directly on the observed samples but displayed weaker, near-normative bias. Our results yield new insights into the principles that govern individual differences in behavior that depends on rare-event inference, and, more generally, about the information-processing trade-offs that are sensitive to not just the complexity, but also the optimality of the inference process.

Publisher

Cold Spring Harbor Laboratory

Reference46 articles.

1. A bias–variance trade-off governs individual differences in on-line learning in an unpredictable environment;Nature Human Behaviour,2018

2. Bishop, C. M. Pattern recognition and machine learning. Information science and statistics (Springer, New York, 2006).

3. Tibshirani, S. , Friedman, H. & Hastie, T. The Elements of Statistical Learning Data Mining, Inference, and Prediction (Springer International Publishing, New York, NY,2009), 2nd edn.

4. How forgetting aids heuristic inference.

5. Gigerenzer, G. & Gaissmaier, W. Heuristic decision making. Ann. Rev. Psychol. 62 (2011).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3