AMELIE 3: Fully Automated Mendelian Patient Reanalysis at Under 1 Alert per Patient per Year

Author:

Birgmeier Johannes,Steinberg Ethan,Bodle Ethan E.,Deisseroth Cole A.,Jagadeesh Karthik A.,Kohler Jennefer N.,Bonner Devon,Marwaha Shruti,Martinez-Agosto Julian A.,Nelson Stan,Palmer Christina G.,Cogan Joy D.,Hamid Rizwan,Stoler Joan M.,Krier Joel B.,Rosenfeld Jill A.,Moretti Paolo,Adams David R.,Shashi Vandana,Worthey Elizabeth A.,Eng Christine M.,Ashley Euan A.,Wheeler Matthew T.,Stenson Peter D.,Cooper David N.,Bernstein Jonathan A.,Bejerano Gill,

Abstract

AbstractBackgroundMany thousands of patients with a suspected Mendelian disease have their exomes/genomes sequenced every year, but only about 30% receive a definitive diagnosis. Since a novel Mendelian gene-disease association is published on average every business day, thousands of undiagnosed patient cases could receive a diagnosis each year if their genomes were regularly compared to the latest literature. With millions of genomes expected to be sequenced for rare disease analysis by 2025, and considering the current publication rate of 1.1 million new articles per annum in PubMed, manually reanalyzing the growing cases of undiagnosed patients is not sustainable.MethodsWe describe a fully automated reanalysis framework for patients with suspected, but undiagnosed, Mendelian disorders. The presented framework was tested by automatically parsing all ∼100,000 newly published peer reviewed papers every month and matching them on genotype and phenotype with all stored undiagnosed patients. If a new article contains a possible diagnosis for an undiagnosed patient, the system provides notification. We test the accuracy of the automatic reanalysis system on 110 patients, including 61 with available trio data.ResultsEven when trained only on older data, our system identifies 80% of reanalysis diagnoses, while sending only 0.5-1 alerts per patient per year, a 100-1,000-fold efficiency gain over manual literature surveillance of equivalent yield.ConclusionWe show that automatic reanalysis of patients with suspected Mendelian disease is feasible and has the potential to greatly streamline diagnosis. Our system is not intended to replace clinical judgment. Rather, clinical diagnostic services could greatly benefit from a modest re-allocation of time from manual literature exploration to review of automated reanalysis alerts. Our system additionally supports a new paradigm for medical IT systems: proactive, continuously learning and consequently able to autonomously identify valuable insights as they emerge in digital health records. We have launched automated patient reanalysis, trained on the latest data, with user accounts and daily literature updates at https://AMELIE.stanford.edu.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3