Abstract
AbstractNearly all proteins interact specifically with other proteins, often forming reversible bound structures whose stability is critical to function. Proteins with BAR domains function to bind to, bend, and remodel biological membranes, where the dimerization of BAR domains is a key step in this function. Here we characterize the binding thermodynamics of homodimerization between the LSP1 BAR domain proteins in solution, using Molecular Dynamics (MD) simulations. By combining the MARTINI coarse-grained protein models with enhanced sampling through metadynamics, we construct a two-dimensional free energy surface quantifying the bound versus unbound ensembles as a function of two distance variables. Our simulations portray a heterogeneous and extraordinarily stable bound ensemble for these modeled LSP1 proteins. The proper crystal structure dimer has a large hydrophobic interface that is part of a stable minima on the free energy surface, which is enthalpically the minima of all bound structures. However, we also find several other stable nonspecific dimers with comparable free energies to the specific dimer. Through structure-based clustering of these bound structures, we find that some of these ‘nonspecific’ contacts involve extended tail regions that help stabilize the higher-order oligomers formed by BAR-domains, contacts that are separated from the homodimer interface. We find that the known membrane-binding residues of the LSP1 proteins rarely participate in any of the bound interfaces, but that both patches of residues are aligned to interact with the membrane in the specific dimer. Hence, we would expect a strong selection of the specific dimer in binding to the membrane. The effect of a 100mM NaCl buffer reduces the relative stability of nonspecific dimers compared to the specific dimer, indicating that it would help prevent aggregation of the proteins. With these results, we provide the first free energy characterization of interaction pathways in this important class of membrane sculpting domains, revealing a variety of interfacial contacts outside of the specific dimer that may help stabilize its oligomeric assemblies.
Publisher
Cold Spring Harbor Laboratory