Transcription factors drive opposite relationships between gene age and tissue specificity in male and female Drosophila gonads

Author:

Witt EvanORCID,Svetec NicolasORCID,Benjamin SigiORCID,Zhao LiORCID

Abstract

AbstractEvolutionarily young genes are usually preferentially expressed in the testis across species. While it is known that older genes are generally more broadly expressed than younger genes, the properties that shaped this pattern are unknown. Older genes may gain expression across other tissues uniformly, or faster in certain tissues than others. Using Drosophila gene expression data, we confirmed previous findings that younger genes are disproportionately testis-biased and older genes are disproportionately ovary-biased. We found that the relationship between gene age and expression is stronger in the ovary than any other tissue, and weakest in testis. We performed ATAC-seq on Drosophila testis and found that while genes of all ages are more likely to have open promoter chromatin in testis than in ovary, promoter chromatin alone does not explain the ovary-bias of older genes. Instead, we found that upstream transcription factor (TF) expression is highly predictive of gene expression in ovary, but not in testis. In ovary, TF expression is more predictive of gene expression than open promoter chromatin, whereas testis gene expression is similarly influenced by both TF expression and open promoter chromatin. We propose that the testis is uniquely able to expresses younger genes controlled by relatively few TFs, while older genes with more TF partners are broadly expressed with peak expression most likely in ovary. The testis allows widespread baseline expression that is relatively unresponsive to regulatory changes, whereas the ovary transcriptome is more responsive to trans-regulation and has a higher ceiling for gene expression.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3