A neural crest stem cell-like state drives nongenetic resistance to targeted therapy in melanoma

Author:

Marin-Bejar Oskar,Rogiers Aljosja,Dewaele Michael,Femel Julia,Karras Panagiotis,Pozniak Joanna,Bervoets Greet,Van Raemdonck Nina,Pedri Dennis,Swings Toon,Demeulemeester Jonas,Borght Sara Vander,Bosisio Francesca,van den Oord Joost J.,Bempt Isabelle Vanden,Lambrechts Diether,Voet Thierry,Bechter Oliver,Rizos Helen,Levesque Mitch,Leucci Eleonora,Lund Amanda W.,Rambow Florian,Marine Jean-Christophe

Abstract

SummaryThe ability to predict the future behaviour of an individual cancer is crucial for precision cancer medicine and, in particular, for the development of strategies that prevent acquisition of resistance to anti-cancer drugs. Therapy resistance, which often develops from a heterogeneous pool of drug-tolerant cells known as minimal residual disease (MRD), is thought to mainly occur through acquisition of genetic alterations. Increasing evidence, however, indicates that drug resistance might also be acquired though nongenetic mechanisms. A key emerging question is therefore whether specific molecular and/or cellular features of the MRD ecosystem determine which of these two distinct resistance trajectories will eventually prevail. We show herein that, in melanoma exposed to MAPK-therapeutics, the presence of a neural crest stem cell (NCSC) subpopulation in MRD concurred with the rapid development of resistance through nongenetic mechanisms. Emergence of this drug-tolerant population in MRD relies on a GDNF-dependent autocrine and paracrine signalling cascade, which activates the AKT survival pathway in a Focal-adhesion kinase-(FAK) dependent manner. Ablation of this subpopulation through inhibition of FAK/SRC-signalling delayed relapse in patient-derived tumour xenografts. Strikingly, all tumours that eventually escaped this treatment exhibited resistance-conferring genetic alterations and increased sensitivity to ERK-inhibition. These findings firmly establish that nongenetic reprogramming events contribute to therapy resistance in melanoma and identify a clinically-compatible approach that abrogates such a trajectory. Importantly, these data demonstrate that the cellular composition of MRD deterministically imposes distinct drug resistance evolutionary paths and highlight key principles that may permit more effective pre-emptive therapeutic interventions.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3