Functional crosstalk between phosphorylation and disease-causing mutations in the cardiac sodium channel Nav1.5

Author:

Galleano IacopoORCID,Harms Hendrik,Choudhury Koushik,Khoo KeithORCID,Delemotte LucieORCID,Pless Stephan AlexanderORCID

Abstract

AbstractThe voltage-gated sodium channel Nav1.5 initiates the cardiac action potential. Alterations of its activation and inactivation properties due to mutations can cause severe, life-threatening arrhythmias. Yet despite intensive research efforts, many functional aspects of this cardiac channel remain poorly understood. For instance, Nav1.5 undergoes extensive post-translational modification in vivo, but the functional significance of these modifications is largely unexplored, especially under pathological conditions. This is because most conventional approaches are unable to insert metabolically stable post-translational modification mimics, thus preventing a precise elucidation of the contribution by these modifications to channel function. Here, we overcome this limitation by using protein semi-synthesis of Nav1.5 in live cells and carry out complementary molecular dynamics simulations. We introduce metabolically stable phosphorylation mimics on both WT and two pathogenic long-QT mutant channel backgrounds and decipher functional and pharmacological effects with unique precision. We elucidate the mechanism by which phosphorylation of Y1495 impairs steady-state inactivation in WT Nav1.5. Surprisingly, we find that while the Q1476R patient mutation does not affect inactivation on its own, it enhances the impairment of steady-state inactivation caused by phosphorylation of Y1495 through enhanced unbinding of the inactivation particle. We also show that both phosphorylation and patient mutations can impact Nav1.5 sensitivity towards the clinically used anti-arrhythmic drugs quinidine and ranolazine, but not flecainide. The data highlight that functional effects of Nav1.5 phosphorylation can be dramatically amplified by patient mutations. Our work is thus likely to have implications for the interpretation of mutational phenotypes and the design of future drug regimens.Significance statementThe cardiac sodium channel (Nav1.5) is crucial for generating a regular heartbeat. It is thus not surprising that mutations in its sequence have been linked to life-threatening arrhythmias. Interestingly, Nav1.5 activity can also be altered by posttranslational modifications, such as tyrosine phosphorylation. Our combination of protein engineering and molecular modeling studies has revealed that the detrimental effect of a long QT3 patient mutation is only exposed when a proximal tyrosine is phosphorylated. This suggests a dynamic crosstalk between the genetic mutation and a neighboring phosphorylation, a phenomenon that could be important in other classes of proteins. Additionally, we show that phosphorylation can affect the channel’s sensitivity towards clinically-relevant drugs, a finding that may prove important when devising patient-specific treatment plans.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3