Abstract
AbstractVascular smooth muscle cells (VSMCs) play a central role in the onset and progression of atherosclerosis. In pre-atherosclerotic lesions, VSMCs switch from a contractile to a synthetic phenotype and subsequently remodel the microenvironment, leading to further disease progression. Ageing and associated mechanical changes of the extracellular matrix as well as hypertension are major risk of atherosclerosis. Consequently, we sought here to systematically study the impact of mechanical stimulations on VSMC phenotypic switching, by modulating both stiffness and hydrodynamic pressure. Thereby we find that hemodynamic pressure and matrix stiffness individually affect the VSMC phenotype. However, only the combination of hypertensive pressure and matrix compliance, and as such mechanical stimuli that are prevalent during atherosclerosis, lead to a full phenotypic switch including the formation of matrix degrading podosomes. We further analyse the molecular mechanism in stiffness and pressure sensing and identify a regulation through different, but overlapping pathways, culminating in the regulation of the actin cytoskeleton through cofilin. Altogether, our data shows how different pathological mechanical signals combined, but through distinct pathways accelerate a phenotypic switch that will ultimately contribute to atherosclerotic disease progression.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献