Author:
Delikoyun Kerem,Yaman Sena,Yilmaz Esra,Sarigil Oyku,Anil-Inevi Muge,Ozcivici Engin,Tekin H. Cumhur
Abstract
AbstractIn clinical practice, a variety of diagnostic applications require the identification of target cells. Density has been used as a physical marker to distinguish cell populations since metabolic activities could alter the cell densities. Magnetic levitation offers a great promise for separating cells at single cell level within heterogeneous populations with respect to cell densities. Traditional magnetic levitation platforms need bulky and precise optical microscopes to visualize levitated cells. Moreover, the evaluation process of cell densities is cumbersome, which also requires trained personnel for operation. In this work, we introduce a device (HologLev) as a fusion of magnetic levitation principle and lensless digital inline holographic microscopy (LDIHM). LDIHM provides ease of use by getting rid of bulky and expensive optics. By placing an imaging sensor just beneath the microcapillary channel without any lenses, recorded holograms are processed for determining cell densities through a fully automated digital image processing scheme. The device costs less than $100 and has a compact design that can fit into a pocket. We perform viability tests the device by levitating three different cell lines (MDA-MB-231, U937, D1 ORL UVA) and comparing them against their dead correspondents. We also tested the differentiation of mouse osteoblastic (7F2) cells by monitoring characteristic variations in their density. Lastly, MDA-MB-231 cells exposed to a chemotherapy drug are separated from original cell lines in our platform. HologLev provides cost-effective, label-free, fully automated cell analysis in a compact design which could be highly desirable for laboratory and point-of-care testing applications.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献