Single Layers of Attention Suffice to Predict Protein Contacts

Author:

Bhattacharya Nicholas,Thomas NeilORCID,Rao Roshan,Dauparas Justas,Koo Peter K.,Baker David,Song Yun S.,Ovchinnikov Sergey

Abstract

AbstractThe established approach to unsupervised protein contact prediction estimates co-evolving positions using undirected graphical models. This approach trains a Potts model on a Multiple Sequence Alignment, then predicts that the edges with highest weight correspond to contacts in the 3D structure. On the other hand, increasingly large Transformers are being pretrained on protein sequence databases but have demonstrated mixed results for downstream tasks, including contact prediction. This has sparked discussion about the role of scale and attention-based models in unsupervised protein representation learning. We argue that attention is a principled model of protein interactions, grounded in real properties of protein family data. We introduce a simplified attention layer, factored attention, and show that it achieves comparable performance to Potts models, while sharing parameters both within and across families. Further, we extract contacts from the attention maps of a pretrained Transformer and show they perform competitively with the other two approaches. This provides evidence that large-scale pretraining can learn meaningful protein features when presented with unlabeled and unaligned data. We contrast factored attention with the Transformer to indicate that the Transformer leverages hierarchical signal in protein family databases not captured by our single-layer models. This raises the exciting possibility for the development of powerful structured models of protein family databases.1

Publisher

Cold Spring Harbor Laboratory

Reference57 articles.

1. DEEPCON: protein contact prediction using dilated convolutional neural networks with dropout

2. Layer normalization;arXiv preprint,2016

3. Learning generative models for protein fold families

4. Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.com/.Software available from wandb.com.

5. Automated Protein Subfamily Identification and Classification

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3