Human-Robot Interaction with Robust Prediction of Movement Intention Surpasses Manual Control

Author:

Veselic Sebastijan,Zito Claudio,Farina Dario

Abstract

Designing robotic assistance devices for manipulation tasks is challenging. This work aims at improving accuracy and usability of physical human-robot interaction (pHRI) where a user interacts with a physical robotic device (e.g., a human operated manipulator or exoskeleton) by transmitting signals which need to be interpreted by the machine. Typically these signals are used as an open-loop control, but this approach has several limitations such as low take-up and high cognitive burden for the user. In contrast, a control framework is proposed that can respond robustly and efficiently to intentions of a user by reacting proactively to their commands. The key insight is to include context- and user-awareness in the controller, improving decision making on how to assist the user. Context-awareness is achieved by creating a set of candidate grasp targets and reach-to grasp trajectories in a cluttered scene. User-awareness is implemented as a linear time-variant feedback controller (TV-LQR) over the generated trajectories to facilitate the motion towards the most likely intention of a user. The system also dynamically recovers from incorrect predictions. Experimental results in a virtual environment of two degrees of freedom control show the capability of this approach to outperform manual control. By robustly predicting the user’s intention, the proposed controller allows the subject to achieve superhuman performance in terms of accuracy and thereby usability.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Measuring Variations in Workload during Human-Robot Collaboration through Automated After-Action Reviews;Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction;2024-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3