In Vitro Safety “Clinical Trial” of the Cardiac Liability of Hydroxychloroquine and Azithromycin as COVID19 Polytherapy

Author:

Charrez Bérénice,Charwat Verena,Siemons Brian,Finsberg Henrik,Miller EvanORCID,Edwards Andrew G.,Healy Kevin E.ORCID

Abstract

AbstractDespite global efforts, there are no effective FDA-approved medicines for the treatment of SARS-CoV-2 infection. Potential therapeutics focus on repurposed drugs, some with cardiac liabilities. Here we report on a preclinical drug screening platform, a cardiac microphysiological system (MPS), to assess cardiotoxicity associated with hydroxychloroquine (HCQ) and azithromycin (AZM) polytherapy in a mock clinical trial. The MPS contained human heart muscle derived from patient-specific induced pluripotent stem cells. The effect of drug response was measured using outputs that correlate with clinical measurements such as QT interval (action potential duration) and drug-biomarker pairing.Chronic exposure to HCQ alone elicited early afterdepolarizations (EADs) and increased QT interval from day 6 onwards. AZM alone elicited an increase in QT interval from day 7 onwards and arrhythmias were observed at days 8 and 10. Monotherapy results closely mimicked clinical trial outcomes. Upon chronic exposure to HCQ and AZM polytherapy, we observed an increase in QT interval on days 4-8.. Interestingly, a decrease in arrhythmias and instabilities was observed in polytherapy relative to monotherapy, in concordance with published clinical trials. Furthermore, biomarkers, most of them measurable in patients’ serum, were identified for negative effects of single drug or polytherapy on tissue contractile function, morphology, and antioxidant protection.The cardiac MPS can predict clinical arrhythmias associated with QT prolongation and rhythm instabilities. This high content system can help clinicians design their trials, rapidly project cardiac outcomes, and define new monitoring biomarkers to accelerate access of patients to safe COVID-19 therapeutics.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3