The chaperonin GroESL facilitates Caulobacter crescentus cell division by supporting the function of the actin homologue FtsA

Author:

Schroeder Kristen,Heinrich Kristina,Neuwirth Ines,Jonas KristinaORCID

Abstract

AbstractThe highly conserved chaperonin GroESL performs a crucial role in protein folding, however the essential cellular pathways that rely on this chaperone are underexplored. Loss of GroESL leads to severe septation defects in diverse bacteria, suggesting the folding function of GroESL may be integrated with the bacterial cell cycle at the point of cell division. Here, we describe new connections between GroESL and the bacterial cell cycle, using the model organism Caulobacter crescentus. Using a proteomics approach, we identify candidate GroESL client proteins that become insoluble or are degraded specifically when GroESL folding is insufficient, revealing several essential proteins that participate in cell division and peptidoglycan biosynthesis. We demonstrate that other cell cycle events such as DNA replication and chromosome segregation are able to continue when GroESL folding is insufficient, and find that deficiency of the bacterial actin homologue FtsA function mediates the GroESL-dependent block in cell division. Our data suggest that a GroESL-FtsA interaction is required to maintain normal dynamics of the FtsZ scaffold and divisome functionality in C. crescentus. In addition to supporting FtsA function, we show that GroESL is required to maintain the flow of peptidoglycan precursors into the growing cell wall. Linking a chaperone to cell division may be a conserved way to coordinate environmental and internal cues that signal when it is safe to divide.ImportanceAll organisms depend on mechanisms that protect proteins from misfolding and aggregation. GroESL is a highly conserved molecular chaperone that functions to prevent protein aggregation in organisms ranging from bacteria to humans. Despite detailed biochemical understanding of GroESL function, the in vivo pathways that strictly depend on this chaperone remain poorly defined in most species. This study provides new insights into how GroESL is linked to the bacterial cell division machinery, a crucial target of current and future antimicrobial agents. We identify a functional interaction between GroESL and FtsA, a conserved bacterial actin homologue, suggesting that as in eukaryotes, some bacteria exhibit a connection between cytoskeletal actin proteins and chaperonins. Our work further defines how GroESL is integrated with cell wall synthesis, and illustrates how highly conserved folding machines ensure the functioning of fundamental cellular processes during stress.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Protein Quality Control Network in Caulobacter crescentus;Frontiers in Molecular Biosciences;2021-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3